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ABSTRACT 

In this report ,  an  analysis of known integration formulas under 

random circumstances are  presented and a procedure for designing an 

"optimal" integration formula which takes advantage of the s ta t is t ical  

knowledge of the integrand is developed.. The optimal integration 

formula of a different degree is chosen according to  the capacity of 

the onboard computer and the required output frequency of the integrated 

value of the integrand. It is shown that a higher degree optimal integra- 

tion formula which c a r r i e s  less of a computational load can be effectively 

derived f r o m  the second degree optimal integration formula. 

reduce the computational complexity necessary for obtaining the optimal 

coefficients of a higher degree integration formula on an  off-line computer. 

To overcome the difficulty of implementing the t ime varying coefficients 

This will 

of a n  integration formula,  a method is developed for designing the con- . 

stant  coefficient suboptimal integration formula. 

obtained by applying these integration formulas show significant improve- 

ment over  those obtained by using conventional integration ru les ,  a. g. 

the trapezoid rule ,  Simpson's rule ,  o r  Newton's three-eighths rule. 

Computational resul ts  



1, INTRODUCTION 

Most of numerical analysis texts [l] [2] deal  with numerical  integra- 

tion problems by considering the integrand deterministically known at 

equally-spaced sampling points, Integration formulas ,  such as the t rape-  

zoid rule ,  Simpson's rule  and Newton's three-eights ru le  etc. , are 

derived by requiring the integration to  be exact for  the case  when the 

integrands a r e  polynomials of various order.  . 

There  s e e m s  to  be a scarci ty  of l i terature  in numerical  analysis 

dealing with the problem when the integrand is a stochastic function o r  

a random process.  Such problems a r i s e  frequently in real time applica- 

tions. F o r  example, in an  inertial  navigation system, the signal f r o m  

the gyro o r  accelerometer  measurement  device is by no means de te r -  

ministic,  but ra ther  a multi-dimensional random process  with known 

stat is t ical  propert ies  aBsdjllin .genslial$. bheisigtlait:is a.a.slr&pted .by rhise. 

The purpose of this paper is to  present  a eystematio pro$oeduT4eLjfor: ) *  

the development of integration formulas which explicitly takes the 

s ta t is t ical  property of the integrand into account and which is optimal 

in the sense of minimizing the accumulated mean square e r r o r  over the 

whole integration interval. 

F o r  illustration, let us take a simple example. 

Let 
* 
x = y(t) ; x(t ) given 

0 

where y(t), the integrand, is a purely random process  with ze ro  mean 

and unit variance. If the  observations of the integrand at the sampling 

points are z( t , )= y(t.); i = O , l , .  . , ,N ,  then it is intuitively reasonable to  

assert that the optimal integration formula is simple x(ti + 1) = x(t.) t dz(ti): 

x(to) = x(t ), where d is the sampling s tep  s ize  and x(t.) denotes the 

1: 1 
A A 

1 
A A 
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computed value of x(ti). Any other formula,  e. g. Simpson's rule with 
$6 

) = x * (ti) t d [z(t.) t 4z(ti + t z(ti will yield a la rger  fti t 2  1 

mean square e r r o r  as can be easi ly  verified ( see  section 3).  

In this report ,  we r e s t r i c t  the consideration to cases  where the 

integrand is a l inear function of a Markov random process  (see section 2). 

An analysis and comparison of the mean square integration e r r o r  of various 

known integration formulas applied to  the above random process  a r e  

given in section 3, 

derived by minimizing the cumulated mean square e r r o r  and aTetFo.Pred 

to be related to  the Kalman-Bucy est imator  which is well-known in 

control theory [4]. However, the computational load of the optimal 

In section 4, the optimal integration formulas a r e  

integration formula increases  with the complexity of the random process.  

A procedure for designing an optimal integration formula subject to 

computational complexity constraints is presented in section 5. The 

resul ts  of applying the derived formula to  typical examples are  com- 

pared with most  commonly used integration formulas (e. g. the t rape-  

zoid rule  and Simpson's rule). 

The types of complexity constraints considered a r e  pr imari ly  

W e  consider generally due to the limit on fast  memory  o r  storage.  

the c lass  of optimal integration formulas which has the f o r m  

a 

j =1 

where z ( ' )  is the measured value of the integrand at various time 

A instants and x(' ) is the calculated value of the integra1,Iydt .  Com- 

plexity constraints are imposed by requiring R to  be fixed and/or  a.(i)  
3 

to  be piece-wise constant. Finally, the interplay between computational 

load and output frequency is discussed in section 6. 

tions showing the advantages of this approach a r e  given. 

Examples of applica- 
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2. FORMULATION 

In the case that the integrand is a linear function 0f.a Markov 

random process  which can be completely specified by the solution of a 

set of linear differential equations driven by white noise, that is, 

$ = F y  t Gu(t) t rw(t) ,  (2-1) 

where y(t) is a column vector, w(t) is a purely random process  with 

and 

E [w(t)] = 0 (2-2) 

E [W(t)W(T)T] = q6(t - 7 )  

(2-3) E [ Y ( t 0 ) l  = Yo 

E [Y( tb )y ( to )T l  = Po 

E [ ] = expected value operator. 

u(t) is a deterministically known input function. 

and (2-3), is equivalent to specifying the joint probability density of y(t) 

for any finite collection of time. 

formulated by computing the value of x(t.) for  i = 1,2,3,  e . .  where 

Knowing (2-=1)8 (2-21, 

Then, the integration problem can be 

1 

& = hTy(t); t 0 t <  tN; x(o) = given (2  -4) 

and measurements on the integrand, h T y, at sampling points, a r e  

z(ti) = hTy(t.) 1 t v(ti) ti = toy tly . . , tN (2-5) 

where h is a vector with the dimension of y(t), v(t) is the measurement 

noise and is assumed to be a purely random sequence with 

E [v(ti)] = 0 (2-6) 

E [v(ti)v(tj)] = r6.. 
1J 

In general, the vector h is a constant vector and without losing 

T generality, we assume h = [l, O,O]. F o r  the convenience of la ter  
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developments, ((2-1) and (2-4) will be discret ized at sampling points and 

to  simplify notation, f rom now on, we shal l  denote "t " by "i", e, g. , 

z(t.1 = z(i) ,x(t i)  = x(i) and y(t.). 

i 

The d iscre te  vers ion of (2-1) through (2-5) is 
1 1 

where 

The measurement  (5) is 

v.. T 
z(i) = h y(i) t v(i), 

1 

Y ( t i  f 1' 7 )  is the transit ion ma t r ix  of (2-1) and [2-4)* 

(2-1). (2-4) and (2-5),  (2-7)  and (2-8) will take their  place f rom now on. 

Instead of treating 

It is 

to be noted that tlriis kind of discretization does not, in principle, introduce 

discretization e r r o r s  , since we can precalculate Y ( i  t 1, i) , u (i), u2( i) and 

Q(i) to  be as accurate  a s  we wish. 

P 
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The problem then is to  design a formula of the type 

(2 -10) A x(i t 1) = f ( x ( O ) ,  ~ ( 0 1 ,  z(l), ~ ( 2 1 , .  . . , z( i  i- i)) 
A such that x(i t 1) i s ,  in some sense,  a good approximation to  the value 

x(i t I) of (2-4) o r  (2-7). 

which is discussed next. 

synthesis problem, to  be detailed in  sections 4 to  6. 

If f is given, we have an analysis problem 

If f is to  be determined, than it is the 

3. ANALYSIS OF KNOWN INTEGRATION FORMULAS 

The e r r o r  terms produced by applying integration ru les  on a 

deterministic integrand are expressed in terms of the higher o rde r  

derivative of the integrand as they are listed in numerical  analysis 

textbooks. 

be random e r r o r s  genefshted; lin addtibiont to 

In our case ,  where y(t) are random processes ,  there  must  

e J d & t ~ r ~ ~ A ~ $ ~ c ' ~ . r r ~ ~ ~ .  

In the field of numerical  analysis,  a general  Rth degree integra- 

tion formula can be represented by 

R 

c, 2: * 
x (i t R - 1) = x (i) + a .z ( i  t j - 1) (3-1) 

j =1 
>:C 

where x ( *  ) is the computed value of x(' ) by applying the deterministic 

integration formula. 

eighths rules  are special  cases  of it. 

The trapezoid, Simpson's and Newton's th ree-  

F o r  example, = 2 gives the 

d d - 
1 2' 1 - a 3  = 3  trapezoid rule with a 

and a2 = -d, 

the cumulated mean square  e r r o r  generated by applying this Ath degree 

integration formula, 

= a2 = -* R = 3 gives Simpson's rule with a 

4 
3 In this section, a procedure is developed for  calculating 

The cr i ter ion for  judging the merit of these formulas  

is chosen to  be the cumulated mean square e r r o r  

N 
J = xE[x( i )  - x * 2  (i)] 

(3-2) 
i =1 
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t h  Pract ical ly ,  the 4 

(R - l)th sampling point, that is, for i =I 1,A, 2Rml, 3R-&, ~ o ,  The x (i)'s 

at other sampling points are not available. 

a fair comparison, additional (R - 2) sets of Ath degree integration formulas 

degree integration formula is applied a t  every  
* 

However, fo r  the purpose of 

have to be ca r r i ed  out to  cover the missed  x(i)'s. F o r  example, in the 

accompanying d iagram 

2nd degree 
> i n k  gration n-,yn-! / .  

4 I B ' li ' 13 formula 
I I ' 7 ;  E I I I 

I I I 

I I I 
I I 

I I I 3rd degree 1 I -&I - I 7 -  I I 
\ -=7\ .A 3 X n t e  gra t  ion 

formula 

Two straight  lines represent  the t ime axes and the various marks on the 

lines indicate the places where the measurements  a r e  made. The 2nd 

degree integration formulas a r e  ca r r i ed  out at i = 1 ,2 ,3 ,4 ,5 , .  . . (refer 

to the upper line), but fo r  a 3rd degree integration formula (refer to the 

lower line) two se ts  of integration formulas have to  be ca r r i ed  along, the 

one at i = 1,3 ,5 , .  , . , the other at i = 2 , 4 , 6 , ,  . . , just  for the purpose of 

computing J a s  shown in (3-2)- 

Considering the general  Rth degree integration formula (3-1) and 

substituting (2-8) into it, yields 

R a * 3Ee 
x (i t R - 1) = x (i) t S j h T y ( i  + j - 1) t z a . v ( i  J + j - ' I)  

j =1 j =1 

Recusively applying (2-7), gives 

(3-3) 
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Replacing y( i  t j - 1) in (3-3) by the iteration equation in (3-4), we 

* ,I,’> *g 
convert (3-3) into 

R - 1  R j -1: 
T j-1 * 

x*(i t - 1) = x (i) t 1 ajh Y 2 2  y(i) t ~ a j h T ~ l y ~ ~ k - 1 [ u 2 ( i  t k - 1) 
j 51 j=1 k=l 

R 
t w2(i t k - l)] t x a . v ( i  t j - 1) ( 3 - 5 )  

3 
j =1 

Cqmbining (3-5) and (3-4), and letting 

w e  have 

where 

p, -= 

U(i)  = 

X(i t R - 1) =@vi) t U(i)  t W(i)  t S ( i )  

1, 0 ,  i x a . h  T Y 2 2  j-1 
I J 

I j = l  
I 

Z Y R  

k=l 
L 

(3-6)  
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and 

j-1 

c a  h x Y  1, k-l w2(i t k - 1' 

j=1 k=l 

*R-l-k 2l 
k =1 

S(i)  = 

2 

L 

[p + k  - l~ 

w2(i t k - 

- 
t j - 1 )  

- 

Examining the t e r m  S(i) ,  we 

terms a v(i) through aRv(i  t R - l)? 1 

find fh'$t.ht! the;  'ith>Step, ;fit -cohtbins 

but a t  the next iteration, it contains 

alv(i t R - 1) through akv(i  t 2R-2). - 1) and 

a v(i  t R - 1) makes S(i) correlated with the next and proceeding i tera-  

tions. 

The presence of a v(i  t R 

1 

The mean equation of ( 3 - 6 )  is 
-_ - - - 

0 
X(i t 1) = @X@) t u(i) ; x(0) = x 

where 
- 
X( ' )  e E[X( ' ) ]  

(3-7)  

( 3 - 8 )  
T Defining P( i) e E[X( i)X( i) ] 

f rom ( 3 - 6 ) ,  yields 

(3-9)  
T P(i t 1) = @P(i)mT t Q(i) t U(i)U(i)T t (P%(i)u(i) 
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where 

T Q(i) = E[w(i)w(i) ] 

and L =  

i a j L R  t 2 a l a 8  

j =1 

0 

0 

0 

0 , .  . . . , o  

o,, . . . ,  0 

0 , .  . . . , o  

0 , .  . . . , o  - 

; P o  = 

2 2  
x x 0, . . . . ,  0 
0 0  

x2* x2 0, . . .  ,,(I 
0 0  

0 ,  0 ,  

0 0  

The t e r m ,  2a a R ,  . comes L;om tJLe correlation effect of S(i) The 

cr i ter ion of (3-2) can now be equivalently expressed in terms of P as 
l a  

i=l 

(3-9) and (3-7) a r e  two k 

PO 

tions. Applying (3-9) and (3-7) itera- 

tively, we can obtain the e r r o r  variances a t  all sampling points of the 

integration intervhl. The cost ,  J, of (3-10) is used a s  a base of com- 

parison in this paper, 

square e r r o r ,  can se rve  the purpose too. An example, for the conven- 

ience of comparison with optimal integration, is given in the next section, 

Other cost  functions, such as te rmina l  mean 

So far, we have t reated the analysis problem on the known integra- 

tion formulas,  under random circumstances,  In  the next section, we * : 

deal’with the p r o b l e d s  of dis i’gniingi on’ optimal :intdgk&t+d 

which takes full advantage of the statistical knowledge of the  integrand 

and which per forms optimally in the sense  of minimum mean square e r r o r .  
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In section 5, an  optimal integration formula with complexity constraints 

will be discussed. 

4. THEORETICAL APPROACH TO A MINIMUM VARIANCE DESIGN 

In this section, an  optimal integration formula for obtaining the 

best estimate of x(i) is developed by minimizing the cumulated mean 

square e r r o r .  

Given process  (2-7) and measurements  (2-S) ,  we require the 

optimal integration formula to be the one which takes the measurements ,  

z( i ) ,  up to the present,  into consideration, and in the meantime, minimizes 

the performance index 

N 
2 J = E[x(i) - $(i)] 

i= 1 
(4-1) 

where $(i) is  the best  estimated value of x(i). 

Since both (2-7)  and (2-8) a r e  l inear,  and we assume u(t)  = 0, 

over the whole interval, i t  i s  reasonable to take the best  estimate of 

x(i + l ) ,  fz(i t I ) ,  to be a l inear combination of x(i), y(i) and the present A A 

measurement ,  z(i  t 11, that is, 

where A(i) and B(i) a r e  mat r ices  and chosen to minimize J .  

In order  to solve this optimization problem; we employ the general  

techniqueL5] of converting a stochastic problem into a deterministic prob- 

lem by working with means and variances,  
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Defining the variances, \ 

and c r o s s  -correlation 

we can convert the performance index J into 

N 
A 

J - 1 T r a c e  D [P(i) t P(i) - 2S(i)] 

i =1 

where 

(4-3) 

The equivalent minimization problem is to choose A(i)  and B(i), Vi ,  

by minimizing (4-3) ,  

applying the well-known technique of variational calculus (see appendix A )  

The solution of this problem is straightforward by 

and the solution is 

A(i) = Y ( i )  - B(i)HY(i) 

B(i) = M(i f l)H(HM(i t 1 )H 
T t R ) - l  

(4-4) 

(4-5) 
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where 

(4-6) M(i -k 1) = P(i -k 1) - Y(i)S(i)TY(i)T 

H = [O,h ] T 

A A  
The orthogonal condition, E{x(i)[x(i) - x(i)]] = 0, for a11 i ,  can 

be easi ly  proved, that  is to say,  the l inear es t imator  given in the f o r m  

of (4-2) is the best l inear  es t imator  of x(i) (see appendix A).  Fureher- 

more ,  if all noises a r e  gaussian distributed, (4-2), with A(  i) and B( i) 
A 

obtained f r o m  (4-4) and (4-E;), x(i)  is the conditional mean given all 

the measurements  up to the present  , OF [61 

A f t e r  a close examination of (4-2), (4-4), (4-E;), and (4-6), we find a 

correspondence between this estimaeos and the well-known KaPman-Bucy 

filter, with B( i) given in (4-81, a s  the Kalman gain. However, in our 

derivation, no gaussian distributed noise is being assumed,  whereas 

the gaussian distributed noise is a basic assumption in the' Kalman-Bucy 

filter. Another noteworthy point of this derivation is that the same 

solution as (4-4), (4-5) and (4-6) is optimal for other performance 

indices J, such as the cumulated mean square  e r r o r ,  the terminal  

mean square e r r o r ,  o r  even the mean square e r r o r  on pa r t  of the state 

variables (see appendix A).  

comparison between this optimal integraeion formula and the commonly 

A simple example is given below and a 

used formulas (e. g. , trapezoid and Simpson's rules)  is given by using 

the equations derived in section 3. 

Example 

INTEGRATION OF A FIRST-ORDER ZERO-MEAN RANDOM 
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where all variables are scalars and the sampling interval,  d, is taken 

to  be 1. 

A f t e r  discretization, we have 

F r o m  (A-5), (A-6 ) ,  (A-7) and (A-16),(A-17) in Appendix A we have 

i: 9 a t ea(- 

A ( i )  = 

A Applying (4-2) and replacing y(i) by z ( i ) ,  we reach  a very simple integra- 

tion formula which c a r r i e s  the same  computational load a s  the trapezoid 

- (1 - 
2a a(l -. e ) "2 - 

The weighting coefficients, a1 and a2, are functions of a only, 

and are independent of noise and time. Using (4-'a), we calculate a and 
1 

a2, for  different values of a as shown in the following table: 



-14- 

0 

-2 

-5 

a, 5 0. 5 

0.498 0.488 

0 .2  0.2 

Kalman-Bucy fi l ter  become la rger  and la rger ,  (i. e. Eqs (4-2),\(4-4) and 

(4-5) since for  a 'higher order  random process ,  more equations have to  

be car r ied  along to update the best  estimate of x(' ). This,  in general, 

is not satisfactory. 

s ider  a procedure of developing an optimal integration formula with 

computational constraints. 

Hence, in the next section, we would like to con- 



I 

120 - 

100 - 

W 
0 z 80-  a - 
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3 
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0 
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K 

(Perfect Measurements) 
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N = 20 
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W 

40 - 
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t 

FIG. 1 STATISTICAL EVALUATION OF INTEGRATION F O R M U L A S  
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FIG. 2 STAT1 ST ICAL EVALUATION OF INTEGRATION FORMULAS 
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5, OPTIMAL INTEGRATION FORMULAS SUBJECT TO COMPUTATIONAL 

CONSTRAINTS 

The computational constraints considered in this section are to re-  

quire  the optimal integration formula carrying the samd computational load 

as that of the deterministic integration formula no matter how high tbe:order: 

of the random process  iso 

A c lass  of integration formulas will be developed, which is given 

as follows 
R 

j -1 

where the new estimate of the integral  is given by the old value of the 

integral  at previous times plus a l inear  combination of past  measurements ,  

and where R is the degree of the integration formula in conformity with 

the usual terminology of numerical  analysis. The a.(i) 's are  to be deter-  

mined to  minimize the performance index which is the same one as given 
J 

in section 3 and 4, 

N 

F o r  k? = 2 the optimal integration formula will have the fo rm of the 

trapezoid rule except that the weighting coefficients are to  be determined. 

That is 

( 5  -2) 
A A 
x(i t 1) =x(i)  t al(i)e(i) t a2(i)z( i  t 1) 

In this section, only the 2nd degree optimal integration formula 

will be considered. 
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Following the same  Pteps' in sectiod3,<\and'de~fining 

P( i) 4 E[X( i)X( i)T] 

we reach  the same iterative relations for P(i) a s  in ( 3 - 9 ) ,  for A = 2,  

except for replacing a l l  a by a ( i )  and a 1 1 2 by a2(i)-  

That is 

P(i t l)=@(i)P(i)@(i)T t Q(i) t U(i)U(i)T 

; P(0) = P o  

where 

L(i) = 

J is converted into 

2 
t a,(i) R 

-1, 

1, 

(5-31 

( 5  -4) 
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Now, the equivalent optimization problem is to choose a (i) and a2(i) 

for all i to  minimize ( 5 - 4 ) ,  subject to the constraint (5 -3 ) .  This is 

1 

a standard deterministic optimization problem except for the presence 

of the delayed control a2(i - 1) in L(i). 

overcome by defining another control variable T ( i  t 1) = a2(i) and 

viewing this equivalent relation as the control variable constraints, 

This difficulty can be easily 

By the general  variational technique, we define a Hamiltonian 

X(i) = Trace  @P(i) t A (i t l)C@(i)P(i)@(i)T t Q(i) (5  -5) 

where A ( i  t 1) and T ( i  t 1) a r e  lagrange multipliers of the constraints 

(5 -3 )  and Tl-i t 1) = a2(i)9 respectively. 

Setting 

we have the variation on J 

The necessary conditions for a (i) and a2(i) to be optimal a r e  1 

T.  
1 

Eqs. ( 5 - 3 ) ,  (5-6) and (5-8) constitute a two point boundary value 

problem. An analytical, solution to  this problem, in general ,  is 

(5 -6 )  

(5 -7 )  

(5 -8 )  

either hard to reach  o r  unavailable. 

technique is applied. 

descent gredient method and a numerical  example is solved by applying it. 

The numerical  minimization 

In this paper we adopt the well-known steepest  



-20- 

In general, the weighting coefficients a (i) and a (i) are time- 1 2 

varying which may be inconvenient in real time applications.. To 

eliminate this difficulty, a procedure for  designing a piece-wise con- 

s tant  coefficient formula is developed. 

In the case  of requiring a,(i) and a2(i) to be constant over the 

whole integration interval, we follow the same  approach for obtaining 

time-varying optimal a (iP and a,(i) as We did up to ( 5 - 7 )  and then wri te  1 

( 5 - 7 )  as 

6 J  

FOP small variations in 6al and 6 a 2  

N-% 

6 a l  -t 

and 

a 

r equir ing 6 J  = 0, we have 

(5-9) 
N- l  

as contrasted with (5-82, 

Eq. (5-9) can be very easily extended to the case  of piece-wise con- 

The solution essentially r@i-ixi%&W&Gmclwaqe. 

s tant coefficients. The res t ra in ts  on constant o r  piece-wise constant 

a (i) and a (i) would of course resu l t  in a decrease  in accuracy. 1 2 

EXAMPLE: INTEGRATING THE GYRO OUTPUT 

In a gyro performance test ,[31 a gyro pack is installed in a s led 

which is tested on a long horizontal track. Gyros are used to measure  

the angular velocity of the s led about the body axes y, z and x, where x 

is perpendicular to the paper 



F r o m  a consideration of the character is t ics  of gyro and vehicle 

dynamics, v the angular velocity of the sled about the x-axis, can 

be modelled a s  a 5th order  gaussian Markov random process  driven 

X’ 

by white noise and vz, as a 3rd order  gaussian Markov random pro- 

cess. [31 v and v are uncorrelated. W e  a r e  interested in the angular 

derivations of the gyro pack f rom the x-axis and the z-axis which 

normally would be zero. 

X Z 

The differentia1 equation, which descr ibes  

the v process,  is shownas follows 
X 

-w 2 
y2 9 

0 ,  

09 0 

09 

-w 2 
yl, 

1 

-WY1 

Q‘ 

where we take y as vx and w , W  are two natural  frequencies of 
y1 y2 1 

the vibration of the vehicle, and 
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1 Q = 5  

W = 60n rad /sec .  
Y1 

W = 3201~ rad /sec .  
y2 

2 A = 0.195 rad/sec. 

B = 0, 6399 r a d l s e c .  2 

The gyro dynamics are neglected here. 

taken f r o m  gyro outputs which are computed by the white noise 

The measurements  are 

z(i)  = yl(i) t v(i) 

where 

E [+(i)]=-O 

E [v(i)v(j)] = RGij; R = 0. 01 

W e  a r e  interested in obtaining the angular deviation that is, the 

integrated value of the angular velocity of the vehicle, o r  x = y,ix(O) = 0. 

I, The numerical  resul ts  for zero,  parabolic and sinusoidal input 

(i. e. u(t)) are given below over 30 integration steps.  Improvement by 

applying optimal integration ru les  is c lear ly  shown, especially in the 

zero-mean ease. 25% improvement over that of the trapezoid rule  is 

expected, if we apply it to  the x-axis. 

expected,. if we apply it to the z-axis. The cost  for  deterministic integra- 

Even grea te r  improvement is 

tion formulas is computed by applying the resul ts  in section 3. 
2 

case  of u(t) = 2t, o r  equivalently t 

for Simpson's rule  and Newton's three-eighths ru le  remain unchanged 

as do those in the ze ro  mean case ,  since Simpson's rule  and Newton's 

th ree  -eighths rule  can integrate parabolic functions perfectly; the 

deterministic e r r o r  is zero.  

In the 

input to  the integrator x(t),: the-eobts 

The only e r r o r  is due to  random e r r o r .  
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The cost  for  applying a n  optimal integration formula to  the z-axis 

is 0.332 x l om8  r a d  which shows an  improvement; and that for  applying 

the trapezoid rule  is 0.98 x 10 r a d  . 
a,(i) for this case  a r e  shown in figure 3. 

2 

-7 2 The optimal values of a,(i) and 

In the case that a ' ( i )  and ai ( i )  are  constrained to  be constant . 1  P ,  

over the whole integration interval, then, fbr the x-axis case ,  

we have 

J = 0.413 

= 0.4896 x 

a2 = 0.4893 x 

"1 

Only 470 improvement is expected. 

F o r  the z-axis case,  we have 

J = 0.1583 x l o m 6  

= 0.1808 x 

= 0.1877 x l o m 3  

"1 

"2 

2570 improvement is expected. 

Newton's 3 /8  

0,1410 x 0. 616708 x lo-' 0. 438118 x l om5  



Magnitude 
of Coefficients 

0. t 5 x lo-: 

0.1 x lo-' 

0 . 5 ~  to-' 

Step 

FIGURE 3 
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6. A HIGHER DEGREE INTEGRATION FORMULA 

A higher degree integration formula generally requires  less 

computation to  cover the same integration interval, but it is used at 

the expense of output frequency of the integrated value (refer to  Figure 4). 

In principle, given a cer ta in  amount of computational capacity, it is. 

possible tQ compute the optimal integration formula of appropriate degree 

to  f i t  it. 

tions for the formulas of different degrees.  

degree integration formula and then all higher degree formulas can be 

However, it turns  out that  we need not to  repeat  the computa- 

W e  only have to  get the 2nd 

derived directly f r o m  it 

t.  2nd degree 
integration 
for  mula 

1 

I I I 
I I 

I 1 1 I integration 
I-./-- I (+>ti 3rd degree 

formula ___c-- -- 
--- . -. -A 

Common Output Points 

A s  an illustration (see the accompaying diagram),  for  a 2nd degree 

formula, x(') is available at every  sampling point, but for  a 3nd degree 

formula,  it is available ony at every  other sampling point. Thus,  if 

only accuracies  at common output points are important, the coefficient 

a ,  (i) for  the 3rd degree formula can be directly obtained f rom a.(i) for  

the 2nd degree formula,  by the following relations 

t '  
J J 

t a1 (i) = al(i) 

a2 (i) = a2(i) t al(i t 1) 

a3 (i) = a2(i t 1) 

t 

' t 3  



N=No. of Sampling Points 

2nd Degree 
Integra tion 
Formula 

in 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I * 

N/2 N 
NO. of Output 

FIGURE 4 
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These relations can be generalized to higher degree. This means that 

once we have obtained the coefficients for  the 2nd degree formula,  the 

coefficients for  other degree formulas can be directly obtained without 

having to  solve another optimization problem. 

in Appendix B,  for interested readers .  

This asser t ion  is proved 

Since the accuracies  of optimal formulas of different degrees  

at common output points are the same, a trade-off between computa- 

tional speed and output frequency is possible. A s  far as computational 

speed is concerned, only the number of multiplications will be counted, 

since it is the main contributor to computing, Let N ,  a very large 

number, be the number of sampling po'in'ts, 

tions required to be ca r r i ed  out over this integration period by using the 

R 

the kth degree integration formula is N/(k-1). 

multiplications against the number of outputs is shown in Figure 4. 

is a l inear curve, 

the number of multiplications required is 2 N and the number of outputs 

Then the number of multiplica- 

th  a 
degree formula is ij-1". The number of output points given by applying 

The plot of the number of 

It 

F o r  instance, for  2nd degree integration formulas,  

is N. 

and so  is the number of outputs. Thus, if one is willing to accept less 

outputs but at equivalent accuracy, he can get away with lower computa- 

tional loads, Therefore,  depending, 6fi the speed of an  onboard computer, 

a n  integration formula of appropriate degree which will achieve equal 

But as the degree goes higher, the computational load is decreased, 

accuracy at common output points, can be chosen by using Figure 4. 

This kind of trade-off cannot be done for  deterministic integration rules ,  

since the accuracies  of the integration at the common output points are 

not equal, 
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7. C ONC LUSION 

It has been shown in this r epor t  how to design a n  optimal integra- 

tion formula by taking the s ta t is t ical  knowledge of the integrand into 

account, and a l so  how to der ive higher degree formulas f rom a 2nd degree 

formula. 

has been discussed. 

this work would prove usefiil ;in space aavtgatkjn a 

A t rade  -off between output frequency and computational load 

In any case, the authors strongly believe that 

Fur ther  researches  and developments in this area are expected. 

An interesting and important problem in this area is to find the updating 

numerical  formula for  a directional cosine differential equation which 

is used in the strapdown navigation sys tem for  updating the attitude of 

a space vehicle. 
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APPENDIX A 
I .  . 

MINIMUM VARIANCE FILTER 

In this appendix, instead of eonsidering the problem formulated 

in section 4, we give a general  derivation of the minimum variance 

filter. 

special  ca se  of this. 

The optimal integration formula shown in section 4 will be a 

Consider a Markov random sequence 
(A - 1) 

T x(i t 1) = +(i)x(i) t w(i); E[x(o)] = xo,E[x(o)x(o) ] = PO; i = 0,. * ,  , N 

where x(' ) is a n  n x 1 vector, @(' ) is a n  n x n transit ion matrix, and 

w(' ) is the n-dimensional white noise with 

E [w(i)] =,O 

T E [w(i)w(j) ] = Q6.. 
1J 

5 .  

The measurement  we'have is 

z (  i) = H( i)x( i) t v( i) (A -2) 

where z(i) is a n  A x 1 vector,  H(i) is a n  R x n matrix and v(i) is an  

A-dimensional white random noise with 

E [v(i)] = 0 

T E [v(i)v(j) ] = R 6 . .  
1J 

Since (A-1) and (A-2) are l inear ,  we assume the optimal estimate of 
A 

x(i t 1),x(i t l) ,  to  be a l inear combination of the previous best estimate of 

x( i ) ,x( i ) ,  and the present  measurement  z( i  t 1). 
A 

Thzt- is, , 

(A - 3) 
A $(i t 1) =A(i)x( i )  t B(i)z(i  t 1) 

where A(i)  is a n  n n matrix and B(i) is an  n x R matrix, and A(i) and B(i)  

a re  to  be determined so  as to  minimized the performance index J ,  which i s ,  
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The presence of D(i) increases  the generality of J. F o r  example, 

puting D(i) = 0 for  i = 0,1,. . , (N - l), would result in a terminal  vari-  

ance minimization problem, D(i) is assumed to be symmetrical, 

Defiving the variance 
T P(i) = E[x(i)x(i) ] 

A A A T  
P(i) = E[x(i)x(i) ] 

and c ross  correlation 
A , T  S(i) = E[x(i)x(i) 1 

A, .. 
we derive the following iterative equations for P(i), P(I,),, .and E?(?) by 

using (A-1), (A-2) and (A-3), 
T 

A A 
P(i t 1) = A(i)P( i )Ai i IT  t B(i)H(i t l)P(i)H(i t l)TB(i)T t B(i)RB(i)T 

P(i t 1) = $(i)P(i)@(i) t Q(i) ; P(o)  = P o  (A-5) 

t B(i)H(i t l)$(i)S(i)Aii)” I- A(i)S(ijT@(i)TH(i t 11 T- B(i) ,T 

A 
; P(0) = P o  (A -6) 

(A -7)  
T ’ T  

S(i t 1) = m(i)S(i)A(iiS t P(i t 1)H(i t 1) B(i) ; S(o) = P o  

and the performance index (4) is converted into 

Since D(i) is a symmetr ical  matrix 

Now, the equivalent optimization problem is to choose A(i) and 

B(i) to  minimize (A-9), subject to  (A-5), (A-6) and (A-7) as constraints, 

Following the well-known technique of variational calculus, define the 

Hamiltonian, 
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A A 
X(i) = T r a c e  b(i)[P(i) t P(i) - ZS(i)] t < ( i y t  l)P(i t 1) 

t q(i  t P)S.(i1t 1) .(A -10) 3 
where < ( * )  and q(') a r e  Lagrange multipliers with dimension n x n. 

(A-5) is not jointed to (A- lo ) ,  since (A-5) is not a function of the con- 

t ro l  variables. 

Necessary conditions a r e  l isted as follows: 

F r o m  

T 5(i) = D(i) t A(i)  <( i  t l )A( i )  ; <(N) = D(N) 

we have 

(A -11) 

(A - 12) T q(i) = 2A(i) <( i  t 1) B(i)H(i t l)@(i) t A(i)Trl(i t l)@(i) 

-2D(i) ; q(N) = -2D(N) 

F r o m  i) = 0 ,  yields aB(i) - = 0 and w4 
A 

2$(i t l)[A(i)P(i)  t B(i)H(i t l) i ( i )S( i ) ]  t T ( i  t l)[@(i)s(i)] = 0 (A-13) 

2c( i  t l)[B(i)H(i -t l)P(i)H(i t l)T t B(i)R 4 A(i)S(i)T@(i)TH(i t 

t q( i  t l)[P(i t 1)H(,i 1) T ] = 0 (A -14) 

Eqs. (A -6, A -7), (A -11, A -12), (A -13, A ~ 1 4 )  oonstitute a two poifit 

boundary-value problem, 

available for  a two-point boundary-value problem. In our case ,  however, 

this is possible. 

In general, the analytical solution is not 

It is easi ly  seen  f r o m  (A-13) and (A-14). If we let 

q(i); = -25(i) for  i = 0,. * . .  , N (A - 15) 

then 
A 

A ( i ) P ( i )  = [$(i) - B(i)H(i t l)$(i)]S(i) (A -16 

B(i)H(i 3- l)P(i)H(i t l)T t B(i)R tA( i )s ( i )T@(i )TFf j i  t l)T 

(A -17) T +P(i $ 1)H(i t 1) 
, I  
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W e  will verify the t ruth of (A-15) later. 

F r o m  the initial condition P(o) = S(o), (A-16) becomes 
A 

A(o) = @(o) - B(o)HC(l)P(o). (A - 18) 

Substituting (A-19) into (A -171, we have 

B(0) = [P(l)H(lIT - @(~)S(o)~@(o)~H(l)~][H(l)P(l)H(l)~ 
.. H ( l ) i P ( o ) S ( ~ ) ~ @ ( o ) ~ H ( l ) ~  t R1-l. (A -19) 

A 
Tf P(1) = S(1), then we can c a r r y  (A-18) and (A-19) a s tep  further 

A 
and iteratively, we can prove (A-18) and (A-19) a r e  t rue  and P(i) = S(i) ,  

for  all i. That i s ,  

A(i) = @(i) - B(i)H(i t l)@(i) (A -20) 

B(i) = [P(i t 1)H(i t l)T - @(i)S(i) T T  6( i )  H(i  t 1) T 1 .  (A -21) 

[H(i t 1)P(i 4- 1)H(i 4- l)T - H(i t l)@(i)S(i)T$(i)TH(i t l)T t R1-l  

A 
To prove P(l) = S(l) ,  we substitute (A-18) and (A-19) into (A-6). 

A f t e r  manipulatidn, this yields 

(A -22) 
A P(l) = @(o)P(o)@(o) A T t [P(l)H(ljT - @ ( o ) S ( o ) i P ( ~ ) ~ H ( l ) ~ ] B ( o ) ~ .  

Similarly,  substituting (A-18) and (A-19) into (A-7), we have 

(A -23) S(1) = @ ( o ) S ( ~ ) m ( o ) ~  4- [P(l)H(lJT - @ ( ~ ) S ( o ) @ ( o ) ~ H ( l ) ~ ] B ( o )  T 

A 
(A -22) and (A-23) imply P(1) = S(l) and by induction, we prove 

A 
P( i) = S( i) (A -24) 

The Orthogonality Principle! 

The interpretion of (A-24) leads to  the orthogqnality priricifild : 
A 

of minimum mean square estimation. This principle states khat x(i) is 

the optimal linear estimate of x(i), for all i, if and only if the e r r o r  

vector e(i)  @ x(i) - x(i) is arthogonal to x( i ) ,  that is, E[e(i)x(i)] = 0,  for 

all i, o r  S(i) = P(i). Thus, if (A-15) is t rue  the fi l ter  derived so far is 

A A A 

A 

the optimal linear filter in the minimum mean square sense. 
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Now, we go back to prove (A-15), which says ,  
' 

q(i)  -2<(i) ; Vi. (A -25) 

Rewriting (A-20) as 

B(i)H(i t l)Q;(i) = @(i)  - A(i )  

and substituting it 'into (A -12), we have 
(A -26) 

T ( i ) - =  A( i )T[2<( i  t 1) t T(i 4- l)]@(i) - 2A(i)T<(i  t I) A( i )  - 2D(i). 

Multiplying (A-11) by 2 and adding t o  (A-26) ,  yields 

T '  
[q(i) C 2p( i ) ]  = A ( i )  [2Ej(i t 1) t q(i t l]]Q;(i) (A -27) 

F r o m  the boundary conditions < (N)  = D(N) and q(N) = -2I?(N,), 

we have 

q{N) f 25(N) = 0 

Applying (A -27) iteratively, we prove that 

q(i) -t 2<(i) = 0 ; Vi 

Thus far, we have derived the optimal filter having the fo rm 

(A-3) with A( i) and B(i) given by (A -20) and (A-21), which can be 

calculated by using (A-5), (A-6)  and (A-7) .  

orthogonality $wiindiple\i >we' pr&v&I.tHe1 :fIlte%\gilvdn 6y (a)-@) tD:  be %he 

Fur thermore  f rom the 

optimal l inear mean square fi lfer.  Two points- to be .emphasized he re  

are that first, no gaussian assumption on the noise probability density 

function is made and second, in the  computing process  to obtain A(i) and 

B(i), D(i) does not appear in the calculations; that  is, the solution given 

by (A-3),(A-21) and (A-20) remains the same no mat te r  what D(i) is. 

This justifies the statement in  section 4 that the integration formula 

is optimal for the performanc by Eq. (4-1). 

The connection of this ance filter with the well- 

known Kalman-Bucy f i l ter  is that B(i) given by (A-21 ), 

Kalman gain a t  i t 1. This filter can be viewed a s  an alternative deriva- 

tion of the Kalman-Bucy filter. 
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SUMMARY O F  RESUZTS 

Plant 

T 
x(i t 1) = @(i)x(i) t w(i) ; E[x(o)x(o) ] = P o  

Me a s  urement s 
T 

z(i)  = H(i)x(i) t v(i) ; E[v(i)] = 0, E[v(i)v(j)] = R6.. 
13 

Minimum variance Filter 

A 
$(i t 1) = A ( i ) x ( i )  t B(i)z(i t 1) 

Performance Index 

N 

i =o 

A(i) and B(i)  a r e  given by 

A(i) = @(i)  - B(i)H(i t l)@(i) 

B(i) = [P(i t 1)H(i t l)T - @(i)S(i)T@(i)TH(i t l)T]. 

T T  [H(i t l)P(i t 1)H(i t l)T - H(i t l)I(i)S(i)  @(i) H(i t l)T t R1-l 

where P(i) and S(i)  are calculated by 

P(i t 1) = I(i)P(i)@(i)T t Q(i) ; P(o)  = P o  

S(i t 1) = @(i)S(i)A(i)T t P(i I- 1)M(i  -l- l)x€3(i)T ; s(0) = P O  
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DERIVATION O F  A HIGHER DEGRE T FGRAT ION FOR MULA 

FROM THE 2ND DEGREE FORMULA. 
, 

Only the derivation and proof for the case of obtaining 3rd 

degree weighting coefficients f rom 2nd degree coefficients will be 

given. Other higher degree formulas will be a direct ,  extention. 

Two optimization problems, 

(1) 2nd degree integration formula 

(B-1) 
A A x(i t 1) =x(i)  t al(l)z(i)  t a2(i)z(i  t 1); 

al(i) and a2 ( i )  a r e  optimally: chosen such that 

V. 
1. # 

, ,  4 -  

I t  

N/2 
J = MP(2i) is a minimum, subject to  constraint (5-3) 

,. I which is i i  . 

( 3 - 2 )  
T 

P(i 1) = @(i)P(i)Ni) t Q(i) t.. . , , . , t L(i) 

(2)  3rd degree intergration formula 

x(i t 2) .= x(i) t al(i)e(i) t <t a2(i)z(i  t f 1) -+ ag(i)z(i  t 3. 2) (B-3) 

f o r i  = 1 , 3 , 5 , 7 ,  . . . . , N  

t t t al( i) ,  a2( i) and a3( i) are optimally chosen such that 

N / 2  , .  .", 
J = MP(2i) is'a minimum: subject to the constraint of ,, 

i =1 

similar fo rm as (B-2). 
I I -  
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Now we want to  prove that these two minimization problems will 

give the same optimal cost J by applying the following reiatichatbbeh~een 

ehe se t%?3 s; 4 t s  tis6 :c 0 C€$Esir;&€%CS $1 i . .< 

% al (i) = al(i) 

fo r  i.= 1, 3, 7 , .  . . , N  (B-4)  a2(i)  t = a2(i) -f- al(i t 1) 

a3(i)  0 = a2(i t 1) 

Proof: If  we let 

a2 't (i) = aZl 't (i) t a2:(i) 

then (B-3)  can be written as 

The equation between- P(i t 2) and P(i) for  the 3rd degree 

formula can a l so  be writ ten as two sets of (B-2). 

If we let 

a1 t (i) = al(i) 

a22(i) t ?; al(i t 1) 

a,(i) t = a2(i t 1) 

a2 t ( i )  1 7 a2(i) 

t f t and if a1 ( I ) ,  a21 ( i ) ,  aZ2( i) nd 

fo r  i. = 1, 3, 7 , .  , , I N 

t (i) a r e  optimally chosen, a2 (i) will be 

Thus we have proved that 
3 

optimally determined by the relation (B-5). 

the optimization problem (B -2) is equivdleikt to)tKb oiptit&i-akimi%lprobLem 


